
AD-Ri58 711 DESIGN AND ANALYSIS OF ORDERING AND JOIN FOR A 112
MULTI-BACKED DATABASE SYSTEM(U) NAYAL POSTGRADUATE
SCHOOL MONTEREY CR S NULDUR JUN 84

UNCLASSIFIED F/G 9/2 N

11111111112.8
1111125

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURLAU OF SIANDARDS 1961 A

0

NAVAL POSTGRADUATE SCHOOL
T - Monterey, California

THESIS
DESIGN AND ANALYSIS OF ORDERING AND JOIN

FOR A MULTI-BACKEND DATABASE SYSTEM

by EL
Serdar Muldur MAAR4 ME

S Thesis Advisor: .David K. Hsiao

Approved for public release; distribution unlimited

S85 02 19 077

ThesisAdvisor:Dd

4SE:.;P- :-ASS A E'. dA DO., _ -'re0V

READ :NSTRU:TIONS
REPORT DO4CUMENTATION PAGc BEFORE COMPLET:NG FORM

I REPORT 4N-ASE 2, GOVT ACCESSION NO.~ 3 ME: DE - :A z

4 - -- 0! and S.611flo '** 2c qE:,* 5,P Q :0,EqEZ

Design and Analysis of Ordering and Toin' !se' ! s.

DOerations for a Multi-Backend Database Jun PERO4;;:;4='%_AE
* ~~System16 Ngq

7. AU TsOR(, 6 O 'P C - X m -m ~ '

Serdar Muldur

9 MEV)MN ORO 4I ZA- ':N N A-'; A-4 ACCOESS IF z00.Z -q~AM ~ASK~
Naval Postgraduate School ~E 0~ IR

Monterey, California 93943

* Naval Postgraduate School June 19S4 _____

* j Monterey , California 93943 13.N~~c'~

M O, : % .N -42V 4, Z: ESS. dift*. n7 from Ofo iInd Office) 3. SE . A. pI

I Unclass if ied

I SC"ED....

Approved for public release; distribution unlimited

'7 DISTIBIUIO0N SA-EpAE.. 'at .ii abarract enteoed in 31ock 20. If differm',E trom Report)

'8S SUPPL[EMEN-AP, NO0TES

19 EY *0505 (Continue ,n recerse *Ode ti necessary and Identif? by bokRw~r

effective complexity, computing complexity, access complexity,
communication complexity

620 ABSTRACT 'Continue, on -@ere ,sdo tf ,,.cosoarv an,~ Identify by block ,U01b0r

This thesis proposes implementations of the sort and join in the
MIulti-Backend Database System.. The idea of implementing these
operations is to provide better support for relational databases
and relational language interfaces. The key issue analy:ed is
the distribution of functionality of the operation across the
multiple minicomputers of the MDBS architecture. The join
analysis also examines alternative join algorithms.

DO 1473 oI mv OP is lVE SoasoLEre

r. ~StrUNIlY CL.ASSIFICATlON OF "NiS MAGI! ,~on Date. mFfed,

' • . .=
-r

j* - =- " L. % . .. •, , i . . .,.. .. .•..-.. L.

Approved for Public Release, :istriut ion 'ni'ned.

Design and Analysis of
Ordering and Join Operations

for a
Multi-Backend Database System

by

Serdar Muldur
Lieutenant Junior Grade, Turkish 'lavy

B.S., Tur<ish Naval Academy, As F

Acce ssion -For
NTIS GRA&I

DTIC TAB
Submitted in partial fulfillment of the U anBouncd 0

requirements for the degree of Justicato

MASTER OF SCIENCE IN COMPUTER SCIENC Byfrom the Distribution/
Availability Codes

NAVAL POSTGRADUATE SCHOOL Avail and/or
June 1984 Dist Special

Author: . .

Approved by: , /
,Thesis Advisor

Second Reader

Chairman, Department of Computer Science

Dean of Information and aolicy Sciences

2

* .",-. -"

ABSTRACT

This thesis proposes implementations of the sort a

join in the Multiple-9ackend Database System. "he idaof

implementing these operations is to provide better support

for relational databases and relational language interfaces.

The key issue analyzed is the distribution of functionality

of the operation across the multiple minicomputers of the-

MDBS architecture. The join analysis also SX3.1-4es

alternative join algorithms.

"5-
0-

P.3

0°

OF CO NT NTS

-. RO)JCTON*,. r. r{ O U TI N

A. THE ORGANIZATION OF THE THESIS

I I. A REVIEW OF THE MDBS HARDWARE AND

SOFTWARE ARCHITECTURES

- A. DESIOMN 'OALS FOR MDBS

3. THE MD3S SOFTWARE ARCHITE:TJRE 4

1. ALTERIATIVES FOR DISTRI3BUTING THE

SORTING FUNCTIbN 1

A. ASSUMPTIONS 19

B. NOTATION 2")

r. SYNTAX FOR THE SORT FUNCTION 1

IV. THE ISSUE OF DISTRIBUTION OF FUNCTIONALITY

A. THE CONTROLLER PERFORMS THE SORT FUNCTION 25

B. THE BACKENDS PERFORM THE SORT FUNCTION ?7

1. All Backends Sort, and One or

Two Backend's Merge 27

2. All Backends Sort Separately and

Share Merging 29

C. THE CONTROLLER AND THE BACKENDS SHARE

THE SORT FUNCTION 33

1. Backends Sort Block-by-Block and

Controller Merges 33

4

..... - *:,..- ',-,. ...,,- ,,.. ,--- ,-,..--_m .. ,.. , -, 4£ -,.: :, , ,.< :.. .,. .-.-..." '. .". "..-... ..- ,.. .-. "...." . ."... ...-

'A
2. The 3ac.eids Sort and Perform

a Partial Merge, and the Cont-rol!er

Performs the inal Merge .

D. EVALUATING THE ALTERNATIVES 35

E. COMPARISONS BETWEEN ALTERNATIVES

C.1 A'ID C. 2...................................4

F. RECOMMENDED DISTRI3UTIOl)F FU4CTIOA'- Y ..

V. DIFFERENT ALGORITHMS FOR TH- SORT AND

MERGE PHASES 43

A. SORTING WITH n BLOCKS AT A TIME is

3. THE K-WAY MERGE 32

C. FITTING THE SOFTWARE ARCHITECTURE OF MDBS 53

1. Utilizing the Descriptor and

Cluster Information 53

2. Utilizing Existing Mechanism for

Storing Temporary Data 60

3. The Case that Records are not Evenly

Distributed Across the 3ackends 62

a. The Backend Performs the

Sort Function 63

4 b. The Records are Distributed

Evenly Among the Other Backends 64

41. INTRODUCTION TO THE JOIN 65

4 A. TERMINOLOGY AND NOTATION 53

B. ASSUMPTIONS 6

C. A SYNTAX FOR THE JOIN 70

5

"-6 " , - ! - . " " .L : • : -<

- .s. r " - " " -- -- .. .? - * *w -. b W : . - - .

" Il. THE ALTERNATIVE D$RIBUTI!NS OF THE

JOIN fUnCTION 7

° A. R,'E) .. EE, R -.S T'.iE

JOIN FUNCTION "

B. THE BACKENDS PERFORM THE JOIN FUNCTIN 3.

1 . The Backends Share the

Join Equally -

2. The Sackends Perfor-n the

Jh)in 3t p-by-,3tep

3. 9he 9ac<end Performs the

Join Function

C. THE CONTROLLER AND THE BAC<ENDS

SHARE THE JOIN FUNCTION 0

D. EVALUATING THE ALTERNATIVE

DISTRIBUTIONS OF THE FUNCTIOIALITY 32

VIII. AN ALTERNATIVE JOIN ALGORITHM

A. ALTERNATIVE DISTRIBUTIONS OF THE JOIN

FUNCTION BY USING A SORT-MATCH ALGORITHM ... 36

1. The Backends Share the Join 87.

2. The Controller Performs the Join 90

- B. COMPARISONS BETWEEN THE TWO ALTERNITIVES ... 92

C. COMPARISONS BETWEEN THE STRAIHTFORWARD

AND THE SORT-MATCH JOIN ALGORITHMS 96

D. RECOMMENDED PROPOSAL FOR THE

DISTRIBUTION OF THE JOIN OPERATION 98

0I

6|

- -- * *•

:X. 11C , IC JSIoN 113

LIST OF REFERENCES .. o................ 1)5

INITIAL DISTRIBUTION

- ~ -. * "7I.- N- -.

TI

A current research effort at the Naval Postgraduate

School is the investigation of the idea of a database

kernel. 7t is proposed that the attribute-based data mcdel

and the attribute-based data language (A9DL) 4s used as a

kernel to support relational, hierarchiical, and network

databases. A prototype software database s'istem, t"e ",uti-

3ackend Database System (YDBS), whi2h uses th

attribute-based data model, is the target kernel system.

The operations of the attribute-based data language are

RETRIEVE, I 1SERT, DELETE, and JPDATE, the four p-jiarv

operations of any database management. One proposal is thaz

additional operations be implemented in MDBS to provide a

more complete database kernel. In this thesis, we

investigate the addition of a sorting capability and the

relational join operation.

MDBS is a multiple-processor system. The interesting

issue, when considering the implementation of the sort and

join operations, is the distribution of functionality amon3

the multiple processors. In this thesis, we propose and

analyze various distributions of the functionality.

" ' ' ' I... ;

.n analyzing the issues of alternative 1istributi:)ns 3f

the functions, our approach will be to use the existing

functional units in MDBS. We propose alternatives, ar.l

evaluate them according to the design goals of SDBS. "ur

proposals require minimal interface changes among the

functional units.

We will approach the issues in the following manner. ye

will make a number of proposals. We will analyze the ti

complexity of the proposals. Then, based on the '1D3 jesiir

goals and the complexity analyses, we will nake spcifi>

recommendations.

A. THE ORGANIZATION OF THE THESES

In the rest of the thesis, we examine the distribution

of functionality for the sort and join operations.

Specifically, Chapters II through V cover the sort function.

Then, Chapters VI through VIII cover the join.

In Chapter II, we give a brief review of the '4DBS

hardware and sotware architectures. In Chapter III, we

present the general assumptions and notation used in

analyzing the alternatives. In Chapter IV, we consider the

distribution of functionality among the controller and the

backends. In Chapter V, we consider specific algorithms for

introducing the sorting function. We also examine the case

where a particular sorting task does not fit the 'DBS

architecture. We discuss how the sort function might

incorporate featlires of the "D.S software hitecture as

well.

Chapter VI introduces the Jin. n-. hapter ', 4e

examine the alternative iistributions of the join :nnct

among the controller and the backends. In Chapter VM':, 3

s pec if ic join algorithm, the sort-match join algoritn-r, is

examined in the context of MDS, . 7ina~ly, in Chapter , 4

summarize *ur conclusions and discuss the contributicns of

the thesis.

10

I I A REVIEW mF THE S HARDWARE AND

SOFTWARE ARCH TECTURES

•'DBS is a multiple minicomputer system that uses off-

the-shelf hardware and special-purpose software in an 4nno-

vative configuration to support high-performance Jatabase

operations and large-capacity databases. An overview of z'e

4D9S hardware organization is shown in Figure 2.1. The b ck-

ends and the controller, which are general-purpose min't-

puters, are connected by a broadcast bus. The controller

will broadcast each request to all backends at the same

time. The backends process the request, and send the results

to the controller via the broadcast bus. Intercommunication

between the backends is also via the broadcast bus. Every

backend has its own dedicated disk drives. Reader should

refer to [Ref. 1, 2, 3) for more detail.

A. DESIGN GOALS FOR MDBS

The major problem for conventional database systems is

their inability to achieve high performance as the database

grows and the rate of requests increases. In order to over-

come this problem, a high-performance multi-backend database

system should have the following properties.

11

S °

~1one or ncre
Z~axc d. ..sv ves

nd

Fiur .1 TeMDSHadwr OaaiaJo

12j

(1) The throughput improvement is proportional to the

number of backends. That is, if the number of backends is

doubled, it should be possible to nearly double the size

of the database without affecting the throughput.

(2) The response time is inversely proportional to the

number of backends. It should be possible to nearly halve

the average response time by doubling the number f

backends.

(3) The system is extensible for capacity growth and/or

performance improvement. By extensibility, we mean that an

upgrade of the system -an be made with no modification t:

0 the existing hardware and software, and no -iajor

disruption of the system activity.

To meet the 'ADBS design goals, the controller is

implemented with the following goals. The amount of the work

that the controller should perform must be minimized in

order to avoid controller bottleneck problems.

Communication between the controller and the backends must

also be minimized in order to avoid bus contention. ks a

consequence of the controller implementation goals, the

backends should do most of the work. Further, the

40

communication among the backends must.be minimized.

13

.-. '. [•/ .. - . .', . .. -' ' - . ' . . - ". • . ' . - . ,

3. THE M4DB5 SCFT'4ARE ARcH:TE:T';RE

MOBS is designed to provide for database growth awt
performance enhancement by the addt. of .det-"

backends and their disks. The software architecture does not

require the development of new software when a backend is

added. in other words, the existing software supports -any

backends as well as a few backends. -he software

ar chtecture allows replication of the existing software "r

the new backends added for exoansion. '!o new software is

devel'oed. Reconfiguration is simple, and does not ro~:ul-e

extensive system regeneration. The software architecture of

MD9S is shown in Figure 2.2. For more detail, refer to ERef.

1, 2, 3].

The software architecture also takes full advantage of

the parallelism in the hardware architecture. The software

of the backends supports parallel processing of the

database. There are three primary features which support

this parallelism. The first is the method by which the,

database is distributed over the disk *drives of the

backends.

The data model chosen for the system is the attribute-

based data model [Ref. 1]. In MDBS the database consists of

files of records. Each record is a collection of keywords

optionally followed by a record body. A keyword is made up

of an attribute-value pair. A record body is string of

characters not used by MOBS for search purposes. In

. -

6 L . . ' \ . , : , " " " . - ," - . " "" " ' " " ,

parti::ular, the first attribute-value -air of each recori of

a file consists of the attribute cILE and the file name 3S

its value. For performance reasons, records are logicaly

grouped into clusters based on the attribute vaijes and

attribute value ranges in the records. These values and

value ranges are called descriptors. At database creation

time, the database creator specifies a number Jf

descriptors. These descriptors are called as clusterIng

descriptors that are used for forming clusters of records.

4n attribute that appears in a descriptor is called 3

directory attribute. 7or the purposes of clustering, on'y

those keywords of the records which contain directory

attributes are considered. Such keywords of the record are

termed directory keywords.

This concept of clusters contributes to parallel

processing in the following manner. The distribution of

data across the backends is based on the concept of

clusters. The records of a cluster are distributed, accross

the backends according to the distribution algorithm

proposed in [Ref. 1]. Therefore, each backend has a part of

the cluster. Thus, each backend may access a portion of the

data required by a request. All backends can work and access

their portions in parallel.

* The second feature of the software architecture which

exploits the paralellism is the way in which directory data

is managed. Every backend has its own copy of the clusters.

15

Te sear for e escriptors related to arece .

be shared by all of the backends.

The third feature which supports paralellisn is th 4

aethod used for scheduling requests and contro::ing

concurrent access to the iatabase and the directory jata.

Each backend keeps a request queue. Requests are screu-ai I

independently, as resources become availab-e. -onzurre'cv s

naintained separately at each backen.d with a Ic<

algorithm. Thus, the backends work indepen en t1 a,

parallel. in exploring alternatives for the sort anr

operations, we dill preserve this idea of independen ,

parallel processing in the backends. ,

Im"

* . . '*-

CONTROLLER

* I POST PROCESSING REQUEST PREPARATION

INSERT INFORMA TION GENERATION

CLUSTER ID ESPTOR 10
:aE NE RATOR ,F'RAn

BAG KEN 0

BAG KEND ____

DIRECTORY MANAGEMENT

CLUSTER i DF IPTOR
SFAPrH ________H _

ADDRESS
GNERA I

I RECORD PROCESSING

AGGRGT PHYSICAL DATI.: CONCURRENCY CONTROL

OPERATION OPERATION

0

Figure 2.2. MOBS Software Architecture

0
17

IIl. ALTERNATIVES FOR DISTR:32T:MO THB ___-__. _ _____....

When considering alternatives for distributing the sor:-

ing function among the processors of M1DBS, we must consiler

both the hardware and software architectures. he hartd'ware

and software architectures, as exPlained in hapter , are

designed for distributing the functionality of the atabase

manalement operations across the backends. 'Ie nust see

an alternative that exploits the inherent parallelism of h.

architecture. The architecture of "D3S dictates 1inim

controller function, minimal message traffic, and identical

software for the backends. The alternatives which we recom-

tend should be consistent with the dictations made on tht

existing hardware and software architectures.

We will consider the complexity of the sort function to

include only the overhead incurred by adding an ordering

specification to a RETRIEVE request, the time required to

retrieve records is not considered. We will develop expres-

sions which represent the CPU activity, expressions which

represent the I/O activity, and expressions which represent

the communication activity on the bus, i.e., the computing

complexity , the access complexity and the communication

complexity , respectively.

When analyzing complexity for functions distributed

accross the backends, remember that the backends are working

SI

. -.. .. .

-F -1 -7 K.7- 117..

parallel. The resut of this distribution of work across 2

backends operating in parallel is that the linear :omolex-

ity, the sum of the work done at all 3 backends, is re .cet

to an effective complexity, the work required at the one

backend which does the most work. Assumption 3 is that the

number of blocks to be sorted is evenly distributed across

the backends. Therefore, since each backend will 4o an

equal amount of work, the effective complexity is equal t o

the complexity at any one backend.

A. ASSUMPTIONS

In each case, we will analyze the worst-case complexity

of the current alternative. In order to simplify the

analysis, we make the following assumptions.

(1) Internal sorting only is considered, due to memory

limitations. The backends are currently 15-bit

minicomputers with a fixed, 32 K-byte address space.

Therefore, memory limitation is a real problem.

(2) All records in a block are to be sorted (i.e.,

selection of records is performed by record processing

before sorting).

(3) Sorting is block-by-block (i.e., a block of records

selected by the record processing function is passed to

the sorting function, where they are sorted and stored in

the secondary storage for merging).

19

'4) Aerge s 2 -way. -his :s the s.P Iest case. ,;e i:I

consider K-way merge in Thapter V.

(3) The number of blocks to be sorted -s e"enIV

distributed across the backends (i.e., if there are '

blocks to be sorted and B backends, then each bac<enI

sorts ' /B blocks).

(5) Some sorting algorithms of the order " *> r

ihere r is the number of records, will be j3ed.

(7) %ecords are sorted on a single cocaterate. key '.. ,

only a single execution).

(3) The time to send a bbock of data across the broadc~st
6

bus is an average time, which will be represented as 3

constant.

(9) The time to read (or write) a block of data f "om'r

to) the disk is an average time, which will be represented

as a constant, and is the same for the controller and the

backends.

(10) The CPU time required for a comparison operation is

the same at the controller and at the backends.

B. NOTATION

In analyzing the time complexity, we will deal with

variables which represent the number of backends, the number

of records to be sorted, the number of records in a block,

etc. We will also deal with certain constants. or example,

according to assumption 8 above, there is some constant

20

Si " .". ..

which represents the time required to seni a bo:< o data

across the broadcast bus. For uniformity, we define t.ie

following variables and constants to be used throughout :h

an alysis.

() 3 the number of backends in the system.

(2) I total number of records to be sorted for a

particular request.

(3) r = the number of records 4n a bock.

,4) b = the number of blocks to be sorted at the b - *nd.

Note that according to assumption 5 , b:I/(R*r). -o

simplify the analysis, we will assume that b is a Power

of 2.

(5) log stands for logarithm to the base ? un'ess

otherwise noted.

C. SYNTAX FOR THE SORT FUNCTION

The syntax of a retrieve request in MDBS is as follows.

RETRIEVE Query Target-list (BY attribute][WITH pointer]

That is, it consists of five parts. The first part is the

name of the request. The second part is a query which

identifies the portion of the database to be retrieved. The

Target-list is a list of elements. Eack element is either

an attribute or an aggregate operator to be, performed on an

i..'>-.. "" " :; :: " "" .-° :.. .

attribute. The fourth part of the request, Y :ause, is

optional. t describes the qhoe alternative of t'.e

attribute such that BY D neans every epartene i. ,. . .

database. The fifth part of the request, WTH pointer, >s

also optional which specifies whether pointers to the

retrieved records nust be returned to t.,e user Dr juer

program for later use in an update request whic is '

our concerns for sort function.

To perforn the sort function, we first need to e

the records that are relevant to the user reue: -.

Therefore, nodified retrieve request can be used as a syn-'3a<

for the sort function.

With modified RETRIEVE request, we nay consider two

different alternatives for a syntax to implement the Join

function in MDBS:

1) RETRIEVE Query Target-list (ORDER BY (Attribute list 1))

2) RETRIEVE Query (ORDER_BY (Attributelist_l),
(Attribute list 2))

In both alternatives, the first two parts are the same

as in regular retrieve request. In the first alternative,

Target-list clause consists of the attribute names with

which the result of the sort function is given to the user.

ORDER-BY clause defines the function to be performed on the

retrieved records. Attrjbute list I defines the list of

22

'- - : .- . - 7 - : - ."

attributes' na-ies with wi:h the retrieved recor:s are

sorted. !f there are iore than one attribute n ane n e

Attribute list 1, then it be assumed that t.he order -.-e

attributes in attribute_ list_" gives the or:er o:

imp' ementation of consequitive sort function on -h

retrieved records. Attribute list-I may contain ei,..-

Directory Attribute(s) or non-directory attributes or

The important ooint is that each attr.b e

attribute list I must be an attribute that the recr:s

retrieved from database obtain it.

in the second alternative, Atribute list 1 in:'jes

attribute namnes with which the record are sorted. The o d e -

of performing the sort function on the records is again the

same as the order of the attributes given -n

attribute list 1.

Attribute list 2 includes the attribute names wi.h.

the result of the sort function is given to the user. .n

other words, it can be thought as a target-list.

0

23

-

IV. THT ISS'J: "C ' :: .:, :.3 3F '' . . ::y

In analyzing the distribution of f-nction, 4e wI;-

assume that the sort function consists of two phases: the

internal sort p and the merge ohase. 9ecause of 7ain

memory limitations, .e require that the reccrds fist Ce

sorted b'k-by-b1ocK. The sorted 10zks are stc -e

temoorary storage in the secondary nemry. Tnis is lone

the internal sort Dhase. Sorted bloczs 4i11 then be

accessed from the secondary storage and merged. -his :s :zne

by the merge phase. The time complexity of these two

processes will be shown separately. At the end of the

analysis of each alternative, the total time complexity will

be given.

We will consider three alternatives regarding

distribution of function through the system. Since MDBS

consists of two type of functional units, namely the

controller and the backends, the possible distributions of

functionality are the following;

A. The controller performs the sort function.

B. The backends perform the sort function.

C. The controller and the backends share the sort

function.

24

.- .

-: -. .' .. .'.. : i" .. • . .* .

0

.We will analyze tese three aternatives ' a e

following sections.

A. THE CONTROLLER PERFORMS THE SORT FU'JT:I

:n this alternative, the backends perform no additignal

functions. All of the sorting is done at the controller.

,.. The backends perform the selection, projectiorn, an

aggregation operations specified in the RETRIEVE rq st,

and forward the result records to the controller. e

controller accumulates the result records from all Df -ne

backends, and sorts them in the order specified e

RETRIEVE request before forwarding them to the requester.

There is no change in the functionality of the backends.

Therefore, no modification of the software of the backends

is required. However, at least two processes in the

controller will require modification. First, the request

processing process must be augmented to recognize the

ordering specification of the request, and to forwa,'- '.he

ordering specification to the post-processing process. Th?

post-processing process must be augmented to recognize that

sorting is required, and to accumulate and sort result

records for a request according to the proper ordering

specification.

First, we assume that all blocks for a query have been

accumulated and stored in the secondary storage of the

controller. The controller will have (B*b) blocks to sort.

25

he inernal sort phase for each block wi'4 1

0(r*logr) time, where there are r records per '"lo. cke

total computing como2.exit for the internal sort ohase ti-e

is, then,

O(B*b*r*log r).

2*3*b accesses to the secondary storage are requ -e

during the internal sort phase. So, the access zomplexisv

of the internal sort phase is

,(Bb).

Since there are (Bb) blocks at the controller, lov(3*b)

will be the number of passes over data for merging. Each

pass will require (B*b*r - 1) comparisons. So, the

computing complexity for the merge phase will be

(log(B*b)*(B*b*r-1)), which is in

0(B*b*r*Flog(B*b).

2*B*b*log (B*b) accesses to the secondary storags are

required for merging, so the access complexity of the merge

phase is

o(B*bAlog (Bb)l

Therefore, the worst-case computing complexity for the

sort function is

26

6

(3*b*r*(Iog (B*b*r)),or

O(N * log N),

and the access complexity is

0(B*b*log(B*b)), or

O((N/r)*(log(N/r)).

In this case, since all sorting and merging is jone 'y

one processor, the controller, the effective complexity anj

the linear complexity are the same.

B. THE BACKENDS PERFORM T'iE SORT FUNCTION

Here we consider two strategies. In the first, all of

the backends share the internal sort phase, and the merge

phase is performed by one or two backends. in the second,

each backend sorts and merges the blocks of data resident at

that backend. The backends then share the work of merging

with B/ ? backends performing the first partial merge, B/4

backends performing the next partial merge, etc. L?t .13

examine each of these strategies in datail.

1. All Backends Sort, and One or Two Backends Merge

In this alternative all backends perform the

internal sort phase individually. After the internal sort

phase is complete, one or two predetermined backends

complete the process by merging all of the sorted blocks.

So each backend sorts b blocks of r records. The

computing complexity of the internal sort phase at one

27

I'" " • - - - - - • " " " [<1 , - - - . . ,

backend is

0(b'r'log r

and 2*b accesses to the secondary storage are required, so

the access complexity of the internal sort phase is

b .

hi1s is the effective coriplexiy for sorting. Since t'-e or

Df sorting is shared among the backends, 4e use tis

effective complex.ity in our analysis.

Next, the sorted blocks of records .ust oe

transmitted along the broadcast bus to the one or two

backends which will perform the merge phase. Let us take

the case where one backend does all the merging. Then, if

there are 3 backends, (B-1)*b blocks must be transmitted.

The communication complexity is

O(B*b).

Also, B*b accesses to the secondary storage are required to

store the transmitted blocks at the backend assigned to

perform the merge phase. This requires the access complexity

O(Bb).

The backend selected to perform the merging now has

(B*b) blocks. Merging (B*b) blocks at the backend requires

the time of (B*b*r-1)*log (B*b). The computing complexi'. is

28

°0

W- -6 .1L. .. -

B 3br o 9 bl

since 2*B*b*log (Bib) accesses to the secondary storage 3re

required, the access complexity of the merge phase at th:s

backend is

0 (B*b*flog (3*b)l).

Therefore, the total computing complexity 'or

sort function is

(b*r*(Log r 3Iog (3*b)),

the access complexity is

O(b*B*log (B*b)),

and the communication complexity is O(B*b).

2. All Backends Sort Separately and Share Merging

In this strategy, all the backends, as ii 'e

previous section, share the work of sorting. Therefore, the

computing complexity of the internal sort phase is, again,

the effective complexity,

O(b'r*log r)

and the effective access complexity is 0(b).

Then, each backend performs the merge phase over its

own b blocks. This requires the computing complexity of

29

and the access complexity of

O(b 2.og bI

Next, the merge phase is shared by the backen s

the manner shown in Figure ".I. First, B/2 bac'e.s i: r

a merge pass, each merging 2*b b.'c<s. The n 7/ 3

perform a merge pass, each merging 4*b bloc<s . Ts z' ss

is repeated log B times. 'low let is lok 3t t- e :-.:.

complexity of the merge phase step by step.

1. step (2*b*r- 1)* log (2)
2. step (4*b*r - 1)* log (2)
3. step (8*b*r - I)* log (2)
4. step (16*b*r - I)* log (2)
5. step (32*b*r - 1)* log (2)

Flog BI step (2°*b*r - 1)* log (2)

The expression for the computing complexity of the merge

phase, then, as derived from the above, is

0(b'r*(2)).

Again, this is the effective complexity.

0

30

0 =

At each step, each target backend first stores tne

blocks transmitted from their neighbor backends before r'e

merge phase starts. This requires the access complexity

I.O(b*2).

Since the merge phase is performed in log 9 stleps,

the access complexity of the merge phase is -erived as t -e

following.

1. step (2*b)*log(2)

2. step (4*b)*log(2)

3. step (S*b)*log(2)

log B step (2 *b)*log(2)

Therefore, the effective access complexity of sharing i-he

merge phase for this alternative is

O(b*(2F))

At each step, one half of the total number of blocks must be

transmitted over the broadcast bus to the target backends

for the next step. Since there are log B steps, the

communication complexity between the backends is

O(Bb* Flog B]).

31

6I

.i

7n -1

_STEP

LogB

Figure 4.1. Performing the Sort Function Step-by-Step

at the Backends

3
.4.

U -".

0

. THE CONTROLLER AND THE 3ACKE'J:S SHARE THE SR7 C 3:. 1

We examine two strategies for distributing the sorting

4function between the controller and the backends. :he first

strategy is that the backends perform only the internal sort

phase, and the controller performs the merge phase. 71-

second strategy is that the backends perform the internal

sort phase and a partial merge, merging all of the re-rds

in the blocks stored at that backend, and the onteo'e-

completes the merge process. Let us examine each of tne

strategies in detail.

1. Backends Sort Block-by-Block and Controller ,er~es

Every backend performs the internal sort phase sn

its part of the file. Each block is sorted and forwarded

directly to the controller for merging. The time complexity

for the internal sorting of a block is O(r log r), where

there are r records in a block. The effective -omputwtg

complexity of the internal sort phase is

O(b*r*log r)

where there are b blocks per backend. 2*b accesses to the

26 secondary storage are required, so the effective access

complexity is

o(b).

0

The sorted blocks are sent to the controller via the

broadcast bus. This communication cost is included in the

33

":':'.... .. .-:..- -.. - -. , ... - --. . "

cos of 7 ::E Ozerati .Or, and is niot 3n .e rhea d :s :

f or sorting. ever e controlr.- s t' . .re : •. .. . -.,-_ oe-~t,., a -

olocks before the .ierge onase starts. I, s re es nhe

access compex it'

0(B*)

The controller now has "*b blocks to be -e-rze: -

c 'I p u ngc m e xi f Lo r a 2 -way m e r Se ~s g

1)) , 'whi.h 23

0(B*b*r* lo g , :

2*B*b*log(B*b) accesses to the secondary storage are

required, so the access complexity for the merge phase is

r
11(B*b*'log (P*b);)

So,the computing complexity for this alternative is

O(b*r*log r + B*b*r* log(B*b)]) or

O(b'r*(log r + ,log(B*b))),

and the access complexity is

O(b*B* flog(Bb)l

2. The Backends Sort and Perform a Partial Merge, and

the Controller Performs the Final Merg

In this case every backend sorts its part of the

requested file, and the controller merges those partially

34

.'. .. .a ~ . ". - --- - . . -. - , - - . . - -. -. .. . •

sorted file parts being sent from every naeen. Size tne

backends perform the .nternal sort pnase 'c.-zy-::z.<, tne

effective computing complexity of internal sort :nsse -s

O(b'r'log r

Assuming that every internally sorted block is stored 3ac

into the secondary storage, the access complexity s

o(b).

Mjo4 each backend merges the sorted blocks resident ,: tna,,

backend. The number of passes over the Jata requi-ed :z'-

the merge phase is log b. 'Therefore, the effective

computing complexity of merging b blocks at the backend is

(b*r-1)*log b, or

0(b~r*,log bl),

and the access complexity is

O(b* log bi).

So, the computing complexity for the internal sort

and merge phases at the backends is

O(b'r* (log r log 6)),

and the access complexity is

O(b* log bl).

35

S-

li * i! i "" i. . ->

I

Commniation of these blocks to the controller 4is a

-ot a part of tne sorting cost. Hcwever, since e

transmitted blocks are to be stored before the "Ierg -Cs13

starts, this requires the access comp.exi.

O(B*b).

The contro.ler, now, 4il. 11 ave 3 rins

records to be -erged. The logarithmic value f tne 'eet 7

backends gives the number of passes over Jata, lo1 3.

the computing complexity of tne erge ase I te

controller is

O(B*b*r*'log Bl1,

and the access complexity is

0(B*b* log BI).

D. EVALUATING THE ALTERNATIVES

In the previous sections we have presented five

alternative distributions of funtionality between the

controller and the backends. In this section we will

analyze the tradeoffs of the alternatives. Table I

summarizes the computing complexities of the internal sort

and the merge phases, the access complexity, and the

communication complexity for all five alternatives.

36

*' i lii - '. .- ' ..- " - . . . -" ', - - . * - . -- '- -

......

LUJ

-77

-L 2

-< - I z

LU-

Q =

. 3 ' ..

A:ternative A represents the jistribution of function

oresen e- in 3ec on A of tn s cnapten. 'he cont "

performs all of tne sorting and all of i e 7er: -'7

Alternative B.1 represents te dis iOuion presente

section B. of this chapter. All of the backends perform tne

sorting , and one or two backends perform the nerging 0: .,e

sorted blcs. Alternative 3.2 reoresents tne s t-i :'.

of function oresented in Section 3.2 of ths chater.

backends perform the sorting ani share the -erging.

Alternative r r-esents t he - stion of f

presented in SectiDn >. of this chapter. All the bac<en 3

perform the sorting and the controller performs the nerging.

Finally, alternative C.2 represents the Jistribution of

function presented in Section C.2 in this chapter. Bac'<enis

sort and perform a partial merge, and the controller

performs final merge.

The complexity formulas of those both accesses to the

secondary storage and block transmission are given only for

the additional accesses or transmissions necessary to

complete the sort function. In other words, accesses to the

secondary storage to retrieve the records in order to

perform selection and projection before the sort function

starts, and transmission of the blocks from the backends to

the controller are not included. In general, each

alternative, except A, has the same time complexity with

38

'""6 -. - ;- , , - . . [_ _ . - .i/

regard to the *nternal sort phase. Therefore, we will focjs

on the other columns in compari.g the alternatives.

First, let us examine alternative A, where he

controller performs all sorting and merging. The zozpting

complexity is O(3*b*r* log(B*b)) for sorting and merging

(B'b) blocks of r records. As easily seen, this alter.;ative

is contrary to the design goal of the minimizing contr r

function. Therefore, we wil eliminate it from f er e

considerations.

'ext, let us examine alternative 3.1, where all 1 ac1er~s

perform the sorting and one or two backends perfor- ihe

merge. The backends perform all of the work of sorting and

merging. Even though this alternative seems to meet the

design goal of minimizing the controller function, it is

contrary to the second design goal of minimizing the message

traffic between the backends. The communocation com.iexity

is O(B*b) for (B*b) blocks. Clearly, for queries involvinp

a large number of blocks, the communication overhead will be

high -and bus congestion may result. Another disadvantage is.

that a single backend performs the merging. Also, when the

single backend is performing the merging, it may delay the

processing of other queries, thus causing a decrease in

system throughput. Because of the communication overhead

and the potential for decrease in throughput, we will also

eliminate alternative B.1 from further consideration.

39

:ext, we eon.ider alternative B.2, wh e r'e a!>. backends

share the sorting 3nd the :erging. he co:niat

complexity is (5*b*log 3) for (3*) boc<s. e

communication complexity increases logarithmica>.y with

the number of backends. Clearly, this alternative is also

contrary to design goal of inimizing the -iessa-e tr ff::

between the bac'<ends. Also, the comcupting eo lexi_., fo. -'.e

-nerge phase and the access co'nDiexity increase exn.

by g 3, where 3 is the number of baceends. _ear v, 2
tis alternative, increasii the nunber of -ac'.en-3D

cause ;onser response time and decreased throujhot. : ,

will not consider 3.2 to be a desirable distribution of

function.

This leaves us -with alternatives C. 1 and

Alternative C.1 is that the backends perform the s)-rg

block-by-block and the controller merges all the blocks.

Alternative C.2 is that the backends perform the sorting and

a partial merge, and then the controller performs the final

merge. Neither alternative incurs transmission overhead.

Therefore, the design goal of minimizing the bus traffic is

met.

In both alternatives the work of sorting and merging is

shared between the backends and the controller. Alternative

C.1,however,does involve more work for the controller th-n

alternative C.2. Since the backends perform the .adin

portion of the merge process in C.2 the controller's work is

40

reduced. Dn the other hand, the workload of the backends is

greater with alternative C.2, than with alternative C.1.

Let us analyze these two alternatives with respect to the

design goals of minimizing the controller function :n-

maximizing the work done by the backends in the next

section.

_. YPA R 3 S 3ETW-E A TERN ArvES C .I AN D 2.2

:n tnis section we will conpare the two alternatives,

namely '.! and C.2. 'n comparing these two alternatives, 4e

will analyze Ofputing complexity and access crp Iex :.,

separately. Since the time to do one disk access is much

longer than the CPU time to perform one comparison, separate

analyses will be more meaningful.

As is shown in Table 1, the internal sort hids-

computing complexity is the same for both alternatives.

However, with alternative C.2, the backends perform a part

of the merge. Consider that, for both alternatives, if the

number of blocks is held constant, increasing the number

backends will cause the number of blocks to be sorted at one

backend, b, to decrease. This decrase is linear work respect

to the number of backends. Therefore the computing

complexity on the backends decreases linearly with an

increasing number of backends.

However, meeting the amount of work done by "he

controller' function is clearly less with alternative C.2

~41

0"

S " **.•*~.*.* ""**~* ~ : - .. ** .**..7* * .

|"T"

than 4ith alternative 2.1, due to the fact that the backends

offload some of the work of merging from the :oncroer.

Consider the case where the total number of recors

is held costant. The computing complexity of alternative C.'

will not vary with the number of backends. For the

al'terrative C.2, the computing complexity of the mergi-. at

the controller 4i11 increase loaarithmi allywi , the n''ee

of backends. However, the computing comloexitv for er ..

at the controller 4ill always be less for the teratte

2.2 than -.I by a factor of (2*b*r !og b) Since b tet-es

as 3 increases, the gain will be proportionately s;.lS'- as

B grows large. Clearly, however, the alternative 2.2 better

fits the goal of minimizing the controller fjnot o,,.

Clearly, a substantial reduction in the controller 4orkI.,ad

will result from assigning more functionality to the

backends.

Now let us examine the effect of increasing the number

of backends. We will analyze the computing complexities,

access complexities, and communication complexities of both

alternatives. Let us examine the case that the total number

of records, N=B*b*r, and the number of records per blocks,

r, remaining constant, while the number of backends, 9,

increases.

42

• ~~~~~~~~~~~~.........,..-....;. .. -..-.--...... ... : :... , -I

For alternative C.1, the total computing complexity .

b*r*log r B 3*b*r*2.og(B*b), or

N*(log N - ((B-1)/B)*Iog r), since b=N/(B*r)

This obviously yields decreasing results for increasing

values of B. This reduction,however,will have ninor effect

on the result of the computing complexity. 7irther, the

reduction can be ignored for large 11 values.

For alternative C.2, the total computing complexity is

b*r*log r + b*r*log b + 3*b*r*Log B , or

N*((1/B)*log N + ((B-1)/B)*log 3), since b=N/(B*r).

(1/B)*log N obviously decreases with the increasing 9.

However, ((B-1)/B)*log B increases for increasing 3 val-es.

There is some breakpoint for where the effect of the

decreasing term has more effect than the increasing tern.

Let us assume that we double the number of backends. The

difference in the total complexities between the case that

the backends are not aoubled and the case that do double is

N*((1/(2*B))*log N -(l/(2*B))*log B -((2*B-1)/(2*B))).

As long as the condition, log N > log B + (?*B-1), holds,

the total complexities will be reduced. So, if the condition

0 N > B*2 holds after doubling the number of backends, then

the computing complexity decreases.

43

. -- o-----° - -. -- - ---.- •- -• -° . .

i
ow, let us examine t.e access c o M n'eXit y

alternative CA1, the total access complexity is

b 3*b*log(3*b), or

N*((1/(3*r)) + log(N/r)), since b=N/(B*b).

Clearly, this complexity decrease as 3 increases. HZ'4ever,

the decrease still has -iior eFect, espe-a'>, f-r a '

N.

The access complexity for alternative C.2 is

b*log b + 3*b*!og 3, or

(N/r)*((1/B)*(log N - log r) + ((B-1)/3)*log 3 .

Again (1/B)*(log N - log r) decreases , but ((B-1)/3)*log 3

increases as B increases. !et us again assume that 4e Jb>

the number of backends. The difference in complexities zoin-,

from B backends to 2*B backends is

(N/r)*((1/(2*B))*(log N -log B -log r -2*9 + 1)).

As long as-the condition, log N > log B log r + 2*B-1,

holds, the total access complexity decreases. So, if the

condition (N/r) > B*2 holds after doubling the number of

backends, then the total access complexity decreases.

44

.

Figure 4.2 illustrates tine comouting anj acc--ess

complexities for both alternatives for 1:2 and 1:2 an:

r:64 as B increases. As is easily seen, alternative

always better than alternative C.1 for meeting tne es:n

goals of MDBS.

RECOMMENDED DISTRIBUTION OF F'JNCT:IIA-ZTY

In the previous sections of tn-s Thaoe te

analyzed the alternatives of the listributLon)f the

functionality and shown t e tradecffs and the alvantnes of

each one. Briefly, alternatives A, 3.1, and . ar

contrary to the design and implementation goals of BS. The

other two alternatives, C.1 and C.2, are pertinent f". oj-

concerns.

At each comparison for alternatives C.1 and i. n in tne

previous section, we have shown that C.? is bette,

alternative for large number of records. Therefore, we

recommend that the functionality be distributed in the

following manner: the backends perform the sorting and

partial merge , and the controller performs the final merge.

0

0

45

0

+ .<> _

<, >

<N

+ 0->. l

1*

go~x SO '? O L C GOXZ O L L0

-ir ----

zz~zz -7.

0T

+ F >

3o

1Al

Ln L tzp en e

I~*t 1

LA

IN i cl
C*

go OIxC g;D ZGLXL 0
iINfl JLdi

47

V DIFFERENT A7jc' :RI:H 'S :p E S3R A" '%E ?'ASE3

In our previous analyses, 4e made the ass mci , pz -

records are sorted one b Iock at a time, using so e we''-

known sorting algorithm with time complexity of *'g <,

.here r _s the number of records _n..o::

chapter, 4e will examine the effect o f sc.e.. .. I-".

ocks at a time, and the effect of usi n a k- az 7 er' e

A. SCR:'C 4T{ n 3KOCKS AT A 7'A

In this case, we sort n blocks at a tine. There a.e t.

cases to consijer. First, if the sorted blocks are st-red

back into the backend's secondary storage, our analysis .i

be the same as th e previous one, except ta at

coefficients of the computing complexity formulae -il be

proportional to n.

The computing complexity for n-blocks-at-a-time sorting

is O(n*r*log n*r). This process will be repeated b/n times.

Therefore, the effective computing complexity is O-(b*r*log

n*r). The access complexity remains the same, O(b). Since

0
there will be b/n runs to be merged, the number of passes

over data becomes log (b/n). Computing complexity for merge

phase, then, will be O(b*r*log(b/n)). Access complexity

for the merge phase is O(b*log(b/n).

48

0

I
-

, * .- ,.o-....- ...

ab.e 2 summarizes time complexities for t-th I:-bv-

block and n-block-7-a- i.me algorithms. As is easily seen,

the computing comp xity for sorting n-bloc.-at-3-te

algorithm is (b*r*log n) times that for sorting bloa-by-

block. However, the computing complexity for merging is less

by (b*r*log n), and the access complexity is less by (b*lo

n) .

Figure 5.1 shows the effect of increasing the nimiber D

backends on the throughput of the CPUJ when sorting n-bToc.-

at-a-time. The x-axis shows the number of backenis, :I-j

axis shows the computing complexity of sorting an -eri

at the backends. The y-axis is shown with log scale. .he~e

values were derived as follows. The complexity foruae are

expressed in terms of N, the total number of records to be

sorted, and B, the number of backends. The computing

complexity required at the backends is

(b*r*log(n*r)) + (b*r1log(b/n)]) or

(N/B)*(log N - log B), since b=N/(6*r).

Using various values of N, varying B from 2 to 16, we arrive

at the curves shown in Figure 5.1.

49

0 .. , . .

<-~2Z

LU L

* -J

C/) = / 3

LU ~Th

= - g

LUc C.-

L< I LU

u ~AJJj u.-/)1

3A~iM~il AO A01-N

K>

.11

Up to this .oint, 4e have utilized 2-1av erge process

for our analyses. As we recal, the t-ie : - lexit o -.erze

is dominated by the number of runs, i.e., tne nu zer o:

blocks which are already internally sorted. The lga.ith..

value of the number of the -uns g7ives the number 3' c)ss.s

over data . n 2-4ay merge the nnber of casses 4s t

bogarithn base 2 of the number f rs. e increase

order of th e -er-e to K, for <-4., mere, h .

passes wil _ be tn e I D.ar-th t he as <: e t a s= , n-"

runs.

4 Let us examine what we gain with this reduced num.ber ofJ

passes. W e assume that all runs are of equal lengtn. -he

notation used is:

R = the number of runs = b/n
log x = logarithm base 2 of x
LOG x = logarithm base k of x

First of all, our access time will be reduced.

in 2-way merge, access complexity is

O(b* log RI).

In k-way merge, access complexity is:

O(b* LOG RI).

Figure 5.2 gives us some information about the reduction in

4 access complexity for a fixed number of R, and a fixed

number of blocks, b, as k increases. The x-axis shows <

where k is the number of blocks merged at one time. The

52

4

.7

y-axis is scaled as maximum I, where 1 is 'he ac ess

complexity for the 2-way merge. The ratio of '-way ierge

access complexity to the 2-way merge complexity is gr _e

here. For instance, the access comolexity for a 4--way nere

is one half of that for a 2-way merge.

On the other hand,of course, increasing 4-iU. i reas?

the computing complexity, or time that is necessary

compare the values. in the 2-way mere, the :om7'ize

complexity is

lb*

Lnk way merge, computing complexity is

'D(b*r*(k-1)* LOG i) or

0(o*r*(k-1)* (log 9 /log)

since LOG(R): log(R) / log i.

Figure 5.3 shows the increase in computing complexity

with regard to k for a fixed R. The y-axis for. tr s formula

is scaled starting with minimum 1, where 1 represents the

computing complexity for a 2-way merge at the backend. The

ratio of k-way merge computing complexity to the 2-way merge

computing complexity is graphed here. 7or instance, the

4-way merge computing complexity is 1.5 times that of the

0
2-way merge computing complexity.

53

0: °.. ""

As seen from -iur e 3. --te access t ev oe

rapidly up to 4C11 of the 2-way merge comp'exity a- k:o.

However, at this point the conputing complexitv has 4 u e.

After this point, k>6, the reduction in access conplex:.'

becomes negligible relative to the increasin, cooutin,

complexity. Therefore, we can take the point, k:, as a,

implementation point for the degree of the 7erge.
5

5L4

- - - ~--'-w---~r rrr~

0

I

1~

I I
9

3 -4

* -1~
*

3

0

7-

/ 0.* / o

*
L

L

.6 0~ 20 90 ~'0 0

AVM~

55

6

.

0' z i 0

A*-

*5

-. -' - ~- ~'xS.. .- ~.''- -% *.---~ -~'% -

4-

* N-

ol- -

57T

C. TT:'3 HE ScFT',ARE .~nC''7-:? ' - 2$ "33

SJp to this point we have not cons der hnw --e exis">.g

features of !ADBS software architecture ci-'t be ut'ilized fPr

the sort function. 'W e may ask a question such as w .e.t.. a

descriptor and cl!uster information can be used to ;,prove

sorting? Another question is whether existing i -. ech'a1s-s

can be used to support the te ocrary stora g -ec,:e'--'.

third question is whether an alternative strategy s-->:

adopted when the number of records are no: even""

listributed across the ba ken's. ".e wl exaine ..e . ..

questions in detail.

1. Utilizing the Descriptor and Cluster information

Recall that the database in MDBS i- organized into

clusters. Each cluster has a unique cluster id , an!i

associated with a unique set of cluster ids. A record

belongs to one and only one cluster. The cluster to which a

record belongs is determined by the set of descriptor ids

which can be derived from the directory keywords of the

record.

How might this helps us in sorting? First consider

the case that the primary(first-listed) attributes in the

ordering specification are not directory attributes. in this

case, the cluster to which a record belongs has no bearing

on the final sorted order.

Next consider the case where the Plributes in the

ordering specification are all directory attributes. In this

0 58

.......................................

case, we can use : uster nformation :n tne fnlo ing

manner. f we also know the relative order of the iescrlp;or

ids which determine the clusters, we nay simply concatenate

the records from the cluster havin; n Iowest o re-

descriptor ids with the cluster having the next higher order

descriptor ids, and so on.

Finally, consider the case where the p-i-ar.

(first-listed) attributes in the ordering specificati~o are

directory attributes, and the secondary attributes in the

ordering specification are non-directory attributes.

Let us first take a look at what we :nay nee tj

* utilize the existing machanisms. What is useful for sorting

process is to know cluster ids and consequently the group of

descripter ids(DIDs). The necessary point is to know the

DIDs associated with records. If the re.~.rd process is

informed with the DIDs of records as well am their addresses

and also the records are retrieved in terms of cluster

numbers, that is, there is no record retrieved belongs to

another cluster till all the records belonging to a cluster

are retrieved. This process guarantees that if the records

are going to be sorted with an attribute which is directory

table attribute, and if the attribute is either type_A or

type_B attribute then none of the clusters will have a

record with the same attribute value. We also need another

process to define which cluster has less or larger value of

attributes. This process needs to check DIDs of clusters

6
59

from descri.ptor-to-descriptor-Jd table and gives a list of

Ds.

We may consider the utility of the above >ases.

First of all, we need to implement three different

algorithms to handle these three different cases. Second,

probabilty that primary sort specification attributes are

directory attributes is unknown.

Let us assume that the system will be irmentec w tk

the implementation of the cluster information. 'n tnat case,

modifications to MDBS are to be done. Recall that the

processing knows only the addresses of the records to ':

retrieved. Therefore, record processing is to be informed

with not only cluster info but also descriptor information

from directory management, including relative ordering f

clusters based on descriptor ids. We do not have a

mechanism available to support the idea. On the other hand,

this implementation violates the information-hiding

principles upon which directory management _j designed.

2. Utilizing Existing Mechanism for Storing Temporary

Data

In the previous sections we have assumed that the

system was providing the temporary storage requirements for

the sort function. We have not considered about how this

might be accomplished. We know that system allocates tracks

as required for new clusters or for extending existing

clusters. Therefore, we know that there exists a mechanism

60

; ii ;! ,! : " ;:;!:! . i-.: -..; -; : ; :.-:..: . : : . :; ... :;: : i ... : - :. :;; . - ::;. 60. . ! I

fz allocating storage. The tfuty lles i- t at; e

allocation .s related to te -once: of a cljste, -nd .o:

to a "block" of data.

:n order to use the existing mechasniss, tn, we

must establish some relationships between blocks of sorted

data and clusters. Since 4e are sorting b1ock-at-a-ti-e, .e

initially need to establish as many temporary clusters 3s 4e

have blocks of data. Then, with each succtsive pass of

merge algorithm, we will require n.i'y half the previous

number of clusters, although the total space re'-irei

remains the same.

0 In current M1DBS, storage is allocated only in the

case of an insert request, where the records is to be

inserted into an already-full cluster or a new cluster is to

be established. The list of available (free) secondary

storage addresses is maintained by directory management. 'lew

addresses for new clusters are assigned during the address-

generation phase.

The second consideration is th-t addresses are

associated with specific clusters, and new cluster ids are

assigned only by the controller. The third consideration is

that records are inserted record-at-a-time, based on an

insert request. For the sorting process, we wish to write

* blocks of records.

61

0 ' " " "" / ' "" ' " " " " "

' _ . ,. . ,- ' . ' - . " - - " - - .-. .- . ". - .' . -' . ." "-'. " ''

I

In order to 'jse tne existing mechanisms, We 1us

modify MDBS so that

(1) The sort process can request a new temporary c!jster.

This may involve sending a message to the controller.

(2) Directory management can generate addresses as required

for the temporary zl.usters.

(3) Pecord processing can insert bilcks nf records as weII

as single record.

(4) Temporary ,::usters and their storage can :)e free, e

* no longer needed.

This is a disadvantage due to extensive modifications.

As an alternative, we may consider the fo 1own z

case. Reserve a certain number of addresses as temporary

storage at system setup time. Use these addresses and the

low-level read and write functions of record processing for

temporary storage.

3. The Case that Records are not Evenly Distributed

Across the Backends

Our time complexity formulas reflect the perfect

conditions for distribution of the records which are to be

sorted. They do not give the correct results for the

condition that one backend contains all the records to be

'sorted and the other backends do not contain any records. In

such a case there are two alternatives to be considered. The

62

first is that the backen havin the -ecoors cerf r-1s tne

sort function without relistribut' of records. The seconJ

is that the records are redistr'outed eve nly alon the

backends. In the following sections we will exa-i.ne these

two alternatives in detail.

a. The Backend Performs the Sort Function

Assuming that the aIaort in hapter 7

section C.2 has been selected for impl-.ertin sort funczt:-'

in M.DBS, we will calculate the t ie (-molexities for t1.I

sort function. The backend now contains (-*b' blocks. ,

the internal sort phase time complexity is

o (B*b*r*log r

and 2*B*b accesses to the secondary memory are required

which is

0 (B*b).

The merge process requires the time O(B*b*r* 'log (B*b):

with the access time to the secondary memory O(3*b* log

(B*b)])

Therefore, the sort finctinn time complexity is

O (B*b*r*(log r + log (B*b)l)),

and the required accesses to the secondary memory are

O (B'b*]og(B*b)I).

63

.- . -."I i , .. .' -. i - -, ' i - • ." " .•. ., . .,

z. The Records are Distribjte d -_eny on t-e

Other Backends

In this alternative the baclends s3.c cf-"1

the controller if thay do not have any recar'is to be sor~e.

The controller then manages the transfer of the records fr .

one backend to the other backends.

Since one backend contains .(3* , c'ks, >-

records are to be transmitted to th, other ac <eis. 3

requires cmrunication ti:ne of *t). t T e a e s '-

contain --ua i nrber of blocks, b. -he x 3

now be calc jated as in tine :hapter :v7 section C.?.

The internal sort process time is D(b*r*lcg r-.

The merge process time at the backends is 0(b*r*og o

Accesses required at the backends are 0 C b*(1+1og b)

Depending on the average time required t

transmit a block from a backend to another backend, 4e can

analyze the difference between the aforementioneJ

alternatives. At this moment we do not know the value of the

transmission time a block. Clearly, there are some cases in

which the transmission is not cost-effective.

P.4

45

"" " " " ";.. " " . ..

Ud

n this part of the thesis, we !-,,estigate possil:_ 4ay3

of imol menting the join operation in 'I D B . W e o s:er ho.4

the functions of the join operation can be 4istr buted -' er

the controller and the . -aceends. Agai ie q s" t 3a-

poss 4be advantage of the parallelism- inherenti in "n .

hardware and software architecture. 4e also wish to a ce'e

to the design 3oa3s of ,D3S, in particular th e -i -4 i 7

of the controller function and message traffic.

in this chapter, we define the terminology and taton

which we will use in our analysis, and make some simplifyinj

assumptions. n Chapter VII, we consider alternative

distributions of the functions of tYe join operation over

the controller and the backends. We examine an alternatiie

join algorithm, a sort-and-match algorithm, in Chapter VIII.

Finally, a recommendation for implementation is given r

Chapter IX.

A. TERMINOLOGY AND NOTATION

First, let us define some terminology. A join involves

two relations, the source relation and the target relation.

The join is formed over an attribute (or attributes) that

belong both to the source relation and to the the target

relation. We will call these the source attribute(s) and the

65

. ..

taraet a'tribure.s), rseive~y T"e D'I a n s -f :he 0 r Ce

attribute(s) must be the same as the oma4ns of "te a- e-

attribute(s).
There are many types of joins. First ee examine e

natural join. et us use an example to il:IJstrae ,a

natural join. The relations oartici-ting 4n a natiral

are given in Figure 5.l.a. Relation 3, the so..rze re3;z1 .

cons4sts of three-tuplas of attribu es, A, , n

Relation T, the tag-et relation, consists of t.ree-t "

attributes, 3, :, and D. The assm.tion is ' -,

attributes havLn g the same name are defneA r e -

domain of values. Thus, the attributes R and C in re'aticn

S are assumed to be drawn from the same domain of v31jes 9s

the attributes 9 and in relation T. -igure 5.1 shows the

cross product SxT of relations S and T, SxT. SxT is formed

by concatenating each tuple of relation S with every tuple

of relation T.

The natural join is formed in two steps. -irst seect

from SxT the tuples such that the values of both col.umns

headed by B and both columns headed by C are the same.

There are three such tuples, the first, fifth, and ninth

shown in Figure 6.1.(b). The second step is to project from

those tuples one column for each distinct attribute. The

result relation, SXVT, is shown in Figure 6.1.(c).

66

p.-
• .I ,L. -.i . ::" . . . - .. ::: .. " : : : -" 7:' .- :-7-l ". ---- - - - " ' : ;:"::.:.:- .

S x T

-- -- ---- ---- -- - -r- r -- -- - - ------ r -- ---

0I

1 2 2 3 2 3 2 "5 I 5 I I I_ 3 I

~7~ 95 : :7;:_2: 3

4 5 3 4 5z
2 '79 2

4 5

77 23 9

a) (b)

S XT

(c)

Figure 6.1. Natural join of two relations, 3 and T.

In general, a join operation can be specified using the

arithmetic comparison operators, =< <= >

Any of these operators may be used to specify the

relationships between the values of the source attribute(s)

and the target attribute(s). For example, the natural join

shown in the example above could be specified as the join of

67

I _____ ,

. - . °". . 2 : 3 : 1; " .: :
-L .;-;T-. "" ,. - ,7,:3 : 9_,,:7 :- .

" and w where attriobte valies of 3 and C in S are iientioa.
,~~ T S3=T. n

to the attribute values of B and in , .e., .

.4 S.C:T.C. When the e'ual :omparison ooerator is used, the

join operation is called an equality 121j. Vhen any otner

comparison operator is used, the join operation is called an

inequality join. The join operation is associative, so that

more than two relations may be joii.ed. tor exanple The :in

Sofh ree re Iations , , and e, he sa e as te + c.

and T, and the join of 'J and the first join.

There are a variety of join algorith-is. The siples :s

the straightforward or nested-loops join. The alori'h: . 3

shown in Figure 5.2.

For each tuple in the source relation do
For each tuple in the target relation do

If the join condition holds true then

form a result tuple

*Figure 6.2. Straight'orwprd Join Algorithm

In the chapters which follow, we will simplify our

* analysis by assuming that join operations are restricted to

equality joins over a single source attribute and a single

target attribute. The. terms, source relation and target

0 68

::-:. '.: - > ,:- .. -, ., -. . , . .- ,.[.,-

reJIation, refer to the files parti:ipating in a jDin

operation in MDBS. 'ience, the source file refers to a source

relation, and the target file refers to a target -elation.

We will also adopt the following notation:

Cs : The number of records in a source file

Ct The number of records in a target file

n The number of blocks belonging to a source fie at

a backend, Cs/(B*r).

m 'The number of blocks belonging to a target file at

a backend, Ct/(B*r).

Quotion of the cross-pr',,wt of i source file ari

a target file which partioipate in a join

operation.

Iog : Logarithm to the base 2.

B. ASSUMPTIONS

In analyzing the alternatives of the distributions of

the join function, we make the following assumptions.

1) The source and target records are distributed equally

across the backends.

2) The join operation is an equality join over a single

source attribute and a single target attribute.

3) The join function is performed after the retrieval and

selection operations specified in the request have been

performed.

69

I.

!i

4) The straightforward or 40es~e-oops join algorithm 2s

used to perform the join.

Accesses to the secondary storage are °arriej ou

block-by-block.

6) The source and target files do not contai, a yv

duplicate records (i.e., after retrieval of the records

which are to participate ii the 4Din Doerat~r, the-a -e

no two identical records in tha source file in

target file). Therefore, there is no record e I ' -1 '1

process from tne files.

C. A SYNTAX FOR THE JOIN

in this section, we will give a syntax for a 2-way JoD..

MDBS utilizes an attribute-based data language, A.DZ, for

user queries. Indeed, an ABDL can be used for any database

applications as a kernel language of any kind of database

machines. Current database application language queries, for

instance, SQL, can be be mapped to ABDL requests.

Using ABDL, a 2-way equality join request is shown as

the following.

RETRIEVE (attributelist_1) (query_ 1)

CONNECT ON (attribute 1, attribute 2)

(attribute list_2) (query_2)

70

. - - • . .• - . . •

The RETRIEVF clause _;-: ;es trat the records whose

attribute-value pairs given in attribute list 1 satisfy tne

conditions given in query_ 1, and the records ,4hose

attribute-value oairs given in attribute_ list_2 satisfy t-e

conditions given in query_?, are extracted fron the

database. Let RI and R2 be the two different files

containing these records, respectively. Th.e

clause specifies the joii on the relations Ri and 2? wi;

the attributes attribute_1, which is (implicitlv i. no.

expli:itly) in attribute list 1, and attrihute_?, wlon i3

in attribute list 2.

4

I.

1

II 71

• : - i., ' :. .: i...... i.i.!"! ::~iT~
i- ? i.-. . . •.

VII. THE ALTERNIATTVe -TSTRTB3J-,'S 07 THE jk .

In analyzing the alternative distributions of te-

function, we will again consider three ffere n

possibilities.

. ehe controller oerforis the jin. finct n

The bac<ends perfori t he)in jcton

C. The j in function is shared by th contr ,,l: -e

bac'ends.

de will examine each of these alternatives in etiI -

following sections.

A. THE CONTROLLER PERFORMS TiE JOIN FUJCTIOJ

In this alternative, the backends perform the retrieval

of the records which will participate in the join operation.

These records are then sent to the controller, and the

controller performs the join.

Since each backend contains n source file blocks and m

target file blocks, the communication complexity is

O(B*(n+m)), or

O((Cs Ct)/r).

Then, storing these blocks in the secondary storage of the

controller has

72

*~~~~~W V.--..r r - -

access I pie x i t,

After receiving the ecorjs f-o a I caczke->js,

::n*roler flo, h as source f Ile b' cks an j '-~:

file blocks. 'sing ".he straightforwari join a'goriTh.,, e z-3.

record in the source file is compared with each re'cr:
the target file n order to form the join. This e-?S

',Cs*Ct) comparisons. So, the computing complexity is

Assuming that no more than one block of the source f .

and one block of the target file are in the primary stDrage

at one time, 2*(B*n*m) accesses to the secondary memory are

required. In terms of the cardinalities of the source an-

target files, this is the access complexity of

0((Cs*Ct)/rz)

B. THE BACKENDS PERFORM THE JOIN FUNCTION

In this alternative, we will consider three dif-ferent

strategies. In the first, the backends share the join

operation equally. In the second, the join function is

performed step-by-step at the backends. In the third, a

9 single backend performs the join function with the complete

source and target files. Let us examine the details of these

strategies.

r
73

.- -,*.... - -7 - . , - ., . . " • . - - , -- .- *i . -*

1. The Backends Share the Join Equal!.l

In this strategy, ,tne backends send either source or

target records to each other. -et us assume that the target

records are transmitted between the backends. f te

transmission of the records, each backend contains 2t target

records. next, each backend performs the join function over

its own part of source records and a1 a re:et

records. Then, the result records from the b Jckencs ae

tr3nsm tted to the controller.

Since each backend contains m target file ol(,

(3*m) target file blocks are transmitted. Theref- - ,e,

complexity of transmitting the target file blocks among the

backends is

O(S*m), or

O(Ct/r).

Each backend first stores (B*m) target file blocks

which requires access complexity of

O(Ct/r).

Each backend now contains n source file blocks and

(B*m) target file blocks. Therefore, the effective computing

complexity for performing the join is

4
O(B*n*m*r), or

0(Cs*Ct/B)

74

" ,

2*3*m*n accesses to the secondary storage are required, so

the access complexity is

C(Cs*Ct/(B*r)).

Finally, each backend transmits the result records

to the controller. Let us assume that each bacend vields

the same number of result records, expressed as a percen-ie

q of the cross-production of the records participati n

the join. Then, the number of the records to be transmittej

from each backend to the controller will be (q*3*n.**r c

(q*(Cs*Ct)/S). The communication complexity for tra~n3ssi4D>

the result records from 9 backends to the controller, then,

is

0(q*('s*Ct)/r).

2. The Backends Perform the Join Step-by-Steo

In this strategy, the join operation is performed

step-by-step at the backends. At each step, the number of

backends involved in the join is reduced by one-half. A

backend performing the join function sends its source and

target records to its neighb backend. Figure 7.1 depicts

the the flow of records. The total number of steps required

is log B, where B is the number of backends.

The arrows indicate the transmission direction of

blocks. At each step, the backends involved first perform

the join on the portions of the source and target files

available, and send the partial result to the controller.

75

4I

S. . .

IV 4

7~77-

[•.- - r

S

Next, the subsets of the source and t~rget files are sent to

the neighbor backend.

At each step, the number of blocks to be transmitted

over the broadcast bus is half of the total number of source

file blocks plus half of the total number of target file

blocks. Thus, the communication complexity for log 9 steps

0(((Cs+Ct)/r)* log 3i).

At each step, the backends receiving the source

target records from their neighbors first store the,.

0 the join starts. The effective access complexity of storing

the records at each step is derived as follows.

1. step (1/2)*(Cs+Ct)/(B*r)

2. step 1 *(Cs+Ct)/(B*r)

3.step 2 *(CsCt)/(B*r)

4. step 4 *(Cs.Ct)/(B*r)

[log step 2 *(Cs Ct)/(Blr)

Therefore, the total effective access complexity for storing

the records is

0(2 6(Cs+Ct)/(B*r))

77

So'

7he computing :cm.lexity for the joi. is derive. as

fo0 -wing.

1. step (n)*(m*r

2. step (*n*r)*(2*m*r) :

3. step (4*n*r)* 4*m*K, *~

B step (2 *n*r)*(2 *m*r)

Therefore, the total effective Co'outing ex 4 3

gO(2 *Cs*Ct/B).

Since the number of source and target blocks oarticina 4nrz

in the join changes at each step, the access :oipe:<t..

during the join is derived as following.

1. step 2*(n*m

2. step 2*(2n*4rn)

3. step 2*(4n*4m)

4. step 2*(8n*8m)

log B1 step 2 n*2 m)

73

- ... -

The total effective access complexity is, then,

O(2 *(Cs*Ct)/(3*r)).

Only the result records are transnitted :o :re

controller. Since we use q*Cs*Ct to represent the number

result records, communication complexity is

0(q*(Cs*2t)/r).

3. One Backend Performs the Join Function

:n this strategy, the source and target reco-:s 3

each backend are transmitted to a Jesignated .ackeni, *;i:

this performs the join. Since each backend contains I

source file blocks and m target file blocks, t.

communication complexity is

O(B*(n+m)), or

O((Cs.Ct)/r).

The records sent from the other backends are first

stored into the-secondary storage of the designated ba-kend.

This is the access complexity of

O((Cs.Ct)/r).

0

79

0

7he eignated backe n now cn a s :s sour e

-cors an jt et -eC s " g S C- r a -7t

algorithm, the computing complexity is

:(Zs*:t),

and 2*3*n*- accesses to the secondary storage are r e : e,

for access coplexity :f

D(s*/- t/).

The designated a c'%e n crduces *s*t 'e:

records. Transission Df these result records 1c

controller has complexity of

3(q*(Cs*C-t)/r)

C. THE CONTROLLER AND THE BACKE"IDS SHARE THE J01. F1J1T::':

In this alternative, the controller and the backends

share the join function , and the controller integrates the

results. Each backend transmits the its part of both the

source records and the target records to the controller. At

the same time, each backend performs a partial join with its

source and target records. In the meantime, the controller

performs the join function with the sets sent from the

backends, except for those sets which are joined at the

4
backends.

30

- . -. .. •

"'4 " : ', " ' " . . '' : : - L . . " ' " . .

. , . . , .

Let n ,n2 ., e n . sbe f the so jrce fle an J

mlm2,...,mB e t- sJbsets n e target fie s r' t:=

backend i, 3i, ct rains the subsets ni and r.i

transmission of t'e whole source and target fi D' .t. e

controller has the communication comolex it, of

O(B*'(nn)), or

The controller first stores th.e records. -'n Ls .e

tne access complexity of ((Cs+Ct)/r

-he artial join uncionon at the backend as -.-3 .

comPuting complexity of (s*Ct/B), and access

complexity of (Cs*Ct/(B*r)

The controller now contains ni source set an,-'

target set. Since the backends perform only part of tre

join , the rest of the join function is performed at the

controller. This means each ni is compared with mj to output

the result records such that I,: i <:B and I<= j <: 3, anj

i-=j. This requires B*(B-1) times (nm) comparisons.

Therefore, the join function at the controller has computing

complexity of

O(n*m*B*(B-1)*r), or

O(Cs*Ct

and access complexity of O(B*n*m), or O(Cs*Ct/r).

$II

- , . .. °

. .. .-.i."

D. EVIA LJ A TI NG 79 F A L E R NA T I V T :4J:~ 1

FJNCTIJMALlTY

I n the previous sections we have presen-e :,
1U

alternative distributions of the functionality of

between the controller and the backends. :n this section, 4e

will analyze the tradeoffs of the alternatives. ao'. e

summarizes tie res--ts of the analyses in terms 3' :.- ta e

computing, access, and communication conplexi 4es.

Aiternative A represents the 4istribution D 2 1:

oresented in Section A of this chapter . The -

performs the join function. Alternative ".1 reoresens tee

distribution presented in Section B.1 of this chapter. Te

backends share the join function equally. Alternative .2

represents the distribution presented in Section .2 of tnis

chapter. The backends perform the join function steo-oy-

step. Alternative B.3 represents the distribution 3.3

presented in Section B.3 of this chapter. Finally,

alternative C represent the distribution C presented in

Section C of this chapter. The controller and the bac<ends

share the join function. Let us examine each of these

alternatives with regard to the design goals of MDBS.

Alternative A is clearly contrary to design goal of

minimizing controller function. Therefore, we will eliminate

it from further consideration. Alternative B.1 meets the

goal of minimizing controller function and distributing the

work over the backends. The communication complexity is also

82

L.

less than that of either of the other alternatives, 3.2 an-

3.3.

Alternative 3.2 meets the design goal. of i iz

controller function. However, the computin an4 access

complexities increase exponentially with the factor of 2*1og

B. This is an especially important consideration fr '

overhead in the system. In addition, the sare blocks 4i'1 :e

broadcasted log 3 times over broadcast bus, increasi,-. ":-_'

communication overhead. As we recall, a similar pr eJj.je

was proposed in Chapter TV f the sort function. oe.' ,

the characteristic of the join function does : t

advantage of this procedure. At each step, the output of the

backends is wasted, since each record in the source file

must be compared with every record in the target file to

form the join. The same records will be transmitted between

the backends redundantly. Therefore, we will eliminate this

alternative from further consideration. Alternative B.3

does not meet the design goal of sharing the work between

the backends. Furthermore, transmission of source and target

file blocks into the designated backend increases the

communication overhead. This alternative is also eliminated

from further consideration.

Alternative C increases the amount of work which is to

be done by the controller. This is also contrary to design

goal of minimizing controller function. Therefore, we will

eliminate this alternative from further consideration.

83

e.

.ks e37-X see". fro, tne above eX:< :.s -:ern .at~e

fjncttnaity. As ,ie -eta!, a ser'ad t f rwa

a'goritim s *jt ize D a naI ze the aItern ;ve

4 s 11r i t rnS . @av . .e c ed t ne be St al e r n at e f or

iist~ibut".'. t.e j3i f~n 5r9 thte si..est -'

o~~ ~ i s rt , e ~ e T ?3' f " et ° '. - 'n- 0 .e S =-

= r i t n . .. 5 s3 a3 D ' n ' 4 e x ' -23 '- e:

I 34

I

. . _ , ; .) ; -,,

II- t - - -.

4- -

-,.- j

- -C -_ _ _ _ -

*i

---- -- .I. I _- "
.- = -.- -1 "- - -

--"Q ¢. .I- _

, II Idd

':1: z _-
-A -N~ £I -w . i " "

-- zi LU

-. i' ..A

i 'i o ' . . •-o.- .•*

. * W;7 7 77** 7 . 77"

In the previoujs chapter, .4e analyzed ze js r: i-n

the functions of the join operation in 'AD2S a s sxn 7 ::a: -

straightforward. join algoritnn is used. In tne f rs5:t

of the th e s s i e s c'Js se J ~o -, t h1e so:rt fn C t

mp l e nt e J n SA$. ssu-lin' that :n e so0r t

irip 1enented as r eco -inen.'el 4.n cn apter 17, 4 e -. 2 sc~

the joi_4n oper ari.' oncan be I mpIer. e 11.e,-- 3n _; sor3

al1go r i thm .

A . ALTERNAT IVE DI STRI BUTIONS OF THE JOI1 EJNC711D11 3v -3

A SORT-MATCH ALGOCRITHM

4hen using a sort-match algorithm, 'he source e c or is

and the target records are first sorted. Then, the Join

function is performed. The join can be formed by a simple

matching of the source attribute values and the target

* attribute values.

In Chapter IV, we examined how to perform the sort

function at MDBS. As we recall, our proposal was to apply

the alternative C.2 in Chapter IV, the backends sort and

perform a partial merge, and the controller performs the

final merge. With such a capability, we propose two

alternatives for distributing the functions of the sort-

match join algorithm among the controller and the bac~ends.

....* " . t;. -t T " ,A : -: . . , L

:n te pevios aptr, 4 anlyze n i~r~b;::n j

The first alternative is as follows. Each backend per or:is

sort and partial merge of the source and target recor-s.

Then, each backend broadcasts its target records t. a!'

other backends. Each backend then joins its porti-n of tne

source records with all of the target records, transmitti.

the results to the controller.

The second alternative is the following. The backenos

perform sort and partial merge on the source anj targe -

records, which are then transmitted to the controller. Te

controller performs the final merge of the source recDr:s

and of the target records, and then performs the n of a>

of the source records and all of the target records. ' et s

examine each of these alternatives in detail.

1. The Backends Share the Join

In this case, both source and target files are first

sorted at the backends separately. Using a comparison-based

sorting algorithm, the effective computing complexity of the

internal sort phases of both Cs/B source and Ct/B target

records is

O(((Cs+Ct)/B) log r).

2*(n+m) accesses to the secondary storage are required. So,

the effective access complexity during the internal sort

phases of both source and target files is

O((Cs+Ct)/(B*r)).

87

:S~

Assuming that the merge phase is also DerforneJ ;o

complete the sorting of both files, the ec ie ef-,cu i.v

complexity of the merge phase at the backenzs is

O(n*r*:log n: + -*r*log m), or

O((Cs/B)*JIog(Cs/(B*r))] (Ct/B)*iog(Ct/(Br))])

2*(n*'og n + m*'og m) accesses to the secon~ary s;or3ze are

required to complete the mer e function. . eref =, _ .e

effective access complexity for the merge at 'he bac'eki3s

3(n*Iog n + miog m) , or

O((Cs/(B*r))m-log(Cs/(3*r))3 + (Ct/(B*r))*iog(2t/'(5*r)').

Next, the target records are transmitted bet4een the

backends This is the communication complexity of

O(B*m), or

0(Ct/r).

backends are first stored before the ioin starts. This is

the access complexity of

O(Ct/r).

Each backend now contains n blocks of the source and

B*m blocks of the tar file. That is, each backend has one

run of source file and 6 runs of target file blocks with the

length of n and m, respectively. B*m target blocks, then,

88 :
I%

.,4

.

• i :!:: "i ": :-:. . - :: " : ;:::. :-] . :: .: .: :,; . . .: ,- • -.. : : ..:--

i- .

must be :nerged by each backend. Assumi ng that a 2-4ay -lerge

is used, the computing complexity of merging B*m olocks at a

backend is

O(9*m*r*og B), or

0(Ct~log B1).

2*B*m*'og B accesses to the secondary storage are reqh~ed.

So, the access complexity required during tne 7erg:e

target records is

O((Ct/r) * log 91).

F Finally, each backend performs the join over s/:B

source and Ct target records. The effective computing

complexity of the join is

O(min (n*r, B*m*r)), or

O(min (Cs/B , Ct)),

and 2*(max (n, B*m)) accesses to the secondary storage

are required. This is the access complexity of

O(max (Cs/(B*r), Ct/r)).

89

S

7..-

Iach boakend no.4 nas a port.on of the resut
- .. , records. 'sing the same notations as in e prevlos

chapter, there are q*(min (Cs/B , Ct)) result recor-s a

each backend. The communication :omplexity of si -

the result records from each backend to the oontroller is

0((B/r)*q*min (Cs/B , Ct)).

' 2. The Controller Performs the Join

Here, each backend performs the internal sort 3'3se

and the oartialI merge phase of t'e its portf :e

and the target records, and then transmits tnese recoris

0 the controller. The controller first merges the sour:e anj

target records separately, and then performs the join on the

source and the target records.

The effective computing complexity to sort n source

file blocks and rn target relation blocks at the backend is

0(n*r*log r + m*r*log r), or

0(((Cs+Ct)/B)*log r))

2*(n+m) accesses to the secondary storage are required. So,

the effective access complexity is

0((Cs+Ct)/(B*r))

Assuming that a 2-way merge is implemented to

complete the sort of n source and m target file blocks. So

the computing complexity of the merge is

90

• _ . o , .• . . -

- . ." - - . i o- . . .

,!(n r og . +r m*r*'.og m) , or

2*(n*log n + m*log m) accesses to the secondary storage are

required. This is the access complexity of

0(n*Ilog nI+ mmlog m), or -N
D((Cs/(3*r)* log(Cs/(B*r) (Ct/(3*r)2+og(Ct/(3*) .

Next, the sorted records are transmitted to the

controller. So, the communication complexity is

0(B*(n+m)), or

O((Cs Ct)/r).

The records are first stored at the controller before the

join starts. This is the access complexity of

O((Cs + Ct)/r).

The controller now contains B*n blocks of source

file and B*m blocks of target file. That is, B runs of

source file and B runs of target file with the length of n

and m, respectively. The computing complexity of merging

source and target records saperately is

0(B*n*r'log Bl+ 3*m*r*flog Bl), or

o((Cs+ Ct)*flog B]).

2*B*(n+mm)*log B accesses to the secondary storage are

9191

| I

required. -n s 4s an access co o'exit f 'n, ' e n ge.r. e at -'.e

controller whicn is 3 (Cs+2t)/rlg3

Finally, the controller perforns she jir n sore t

source and target files. The comput ng cornplexiy fr the

join is O(min (B*n*r, 3*m*r)), or i 4n (s, Ct

and 2*(max (3*n, 9*m)) accesses to the secondary storae

are required. This is an access complexity of he D. an

the controller wnici is (iax (Cs/r, Ct/r)

P A ? 3 0 N S 3 . 'I - E . ..r'i 3 . R 'I A

Table 4 illustrates tn e time c o x i t L'"

alternatives, usin g a sort-match a .gorithi. ;a., :ne

computing complexity, the access complexity, and thie

communication complexity are given separately. -he

computing complexity includes the sum of the comip qi

complexities of the internal sort phase, the merge phase,

and the join.

The access complexity includes the sum of the access

complexities of the internal sort phase, the merge phase,

and the join. Finally, the communication complexity shows

the time required to transmit the source and the target

records among the backends and between the controller and

the backends. The complexity formulas of accesses to the

secondary storage are given only for the adcitional accesses

necessary to complete the join. In other words, accesses to

the secondary storage to retrieve the records to perform

92

'C. . -

° -, •

. A -. c r S.

I

selection and projection before :ne 'zin starts are z

included. L.et us examine t-e Table 4 ro-,w by rOW 3'-03r 1

the two alternatives.

The computing complexity in the backen s ; e

alternative A.1 is larger than the alternat4.ve A.2 -~ze

each backent in alternative A.1 contains all the tarpeti e

records. On the contrary, the alternative A.2 33

computing complexity at the controller. -here"Dre,

alternative A.1 is better than alternative A.2 ith re4ith

to meeting the Iesign f nal of iniiz*nI

function.

The alternative A.1 requires more accesses to the

secondary storage for the backends than the alternative A.2.

However, again, the alternative A.2 requires more accesses

to the secondary storage at the controller. Therefore,

alternative A.1 is better than alternative A.? due tc

meeting the design goal of minimizing controller function.

Despite the situation that the alternative A.2 has lower

transmission overhead, this may be negligible when balanced

against I/O requirements at the controller. Therefore, we

will recommend the alternative A.2, i.e.,the backends

perform the join, for implementation of the join using a

sort-match algorithm in MDBS. This alternative best meets

* the design goals of minimizing controller function and

sharing the work equally at the backends.

.
93

4

C,)

IN-

4--

*L 41 -

,-..-

IL V i

- C- I co- -- >

U4L + -- 0 -

z

~~~~-W~~~L z/ -. L.( ~ ~ L

I-J (n Uj U n-L 1 n

AiIXJ~dWOO 1kiIX31dWOo AiIX3 dWO3
_________ NiifdWOD SO9 iivomnfwwoo

94



.44

K' z

.4.j

I -J

3-1'

z
Q-)

* z

LL. LU -

* L - ,J LU LJ

= =~

*9 -



AD-Ai58 711 DESIGN AND ANALYSIS OF ORDERING AND JOIN FORA A72
MULTI-BACKED DATABASE 5YSTEM(U) NAVAL POSTGRADUATE
SCHOOL MONTEREY CA S MULDUR JUN 84

UNCLASSIFIED F/G 9/2 NL



liii0 M.25 I
L 36 -

lw

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUJREAU OFI SIANDATIT 196 A



.1

M DP AT HT~~

abIle 5 depicts the time complexities forr the zest

alternative using the straightforward join algorithm anj the

best alternative using the sort-match join algorithm. Uet ,s

now compare the two alternatives. Let is assume th th

number of source records is equal to the nuiber f z

records, i. e Cs = t . et the block size, -, be e- - -

54. 4e 4ill compare the a cess conplexities an -

computing 2omplexities of tne two ntert es

selected number of records involved, Cs and Ct, the 'es -

proportionality, q, and varying the number of backends,

Figure 3.1 shows the access complexities for Cs=zt=2 an

2 , q=O.1, and number of backends, B, from 2 to . The

increasing number of bacends has little effect on access

complexity when a sort-match algorithm is used. However,

when the straightforward algorithm is used, the access

complexity decreases sharply as the number of backenJs

increases. Note that for a large number of backends, 3>13,

the reduction becomes negligible. The access complexity

required for the sort-match algorithm is always less than

that required for the straightforward algorithm, and is

substantially less for a smaller number of backends.

96



>

:IS

to--I

400

III 3 II



Figure 3.2 shows :ne . .out ig ::' e
- algori thms with Cs=Zt=2 an 2 :n ' "-:s zae

alternatives have decreasing .z.itng :o n p e.x ."-

the computing complexity for t .e sort-rnatX a.itnn is

less than that required for the straightforwari ...

algorithm, and substantially less f r a sma2. n;",er of

backends. When the number of source and target re' ... s

increase, the ifference between the two a or 3Ls 5

increase.

figure 3.3 shows the com -iiat In ...D-;. ef x2e

straightforward join algorithm with Cs:Ot= 2 2, an .

quotion, q, ranges from 0.1 to 0.5. Figure 3.U depiots the

same complexity for the sort-match join algorithn with

s:Ct:2 - 2 , and q:0.1-0.5. These two figures illistr3te

that increasing Cs, Ct, and q affect on the communication

complexity of the straightforward join algorithm more than

the sort-match join algorithm.

D. RECOMMENDED PROPOSAL FOR THE DISTRIBUTION OF THE J07'4

OPERATION

In the previous sections, we have analyzed the

alternatives of the distribution of the functionality and

shown the tradeoffs and the advantages of each one by using

two different join algorithms, namely the straightforward

join algorithm and the sort-match join algorithm.



3riefly, alternative 3.1 in Chapter 'IZ us-ig a

straightforward join algorithm and the alternative A.1 in

Chapter 'JIl! using a sort- atzh join algorithm are the :est

alternatives for distribution of the functionaity.

alternatives, the functional unit performing the jo i

'!DBS is the bacl<ends. Finally, comparisons between t'ese t.4o

alternatives have shown that the alternative A.A,1a ,

the bao<ends using a sort-match join algorithm, is bet-er

than the alternative 3.1, join at the backenjs isIig 3

stra*ghtforwar join alorithm, on account Df ieet -nt-

jesign goal of minimizing the com:nun -ation overheat bet e-n

the controller and the backends.

Having analyzed all the alternatives, the n:st

appropriate choice for implementing the join in MD3S is that

each backend performs a partial 1oin with its portion of

source records and all target records. Then,the results are

sent to the controller. The controller will then forward the

final result to the host computer.

99
".- . -S.,... . .;.22...- - I-, .i -..L , -.:: . -.; ,.



.1

I,

- =

~w .~4

i

-9 -

91 ~

z -~

-

I -

I II -
- - I 0

I I I
II II I

4~l -
(~ C...) * -~ 4
II *ii
~ Lfl II (

~ a4
I~ 0

* #0 -

I -
* a I

Az' I

/
Q

iINfl 3W11

r ~ c

I

--- . .. . . .*



x7

S

S -j

co

* Sd

go XR goI X 90LV goxz

Siu Iw



* .. . . .

I *

0

* a . '~.% -

a.- -

* I
* I -
* I

* a

* a

*1.

* a 0

I I -

~ ~. ~..ja N

- - - - - -' * a C ~
,-~ ~' a a

II II II II
6.1 ~J ~ 4J

a II Ii II I II *

~, v~ ~ aja 'A a . a
~ L~ ~) (...) L~ a a -

a * a a
* a a

* * * * a

I I

I I 21
0009 000~ L~I1 3W1.L 000~ 0

0

* . . . . * * . * . *. .. . . . .



-' tnis thesis, We t Ce te sort n

Aiding so ani j) aabl*~

° : . . . . ... o . . , s ; 3 ) - - . . . . . .

database and re7 'aI)n i1 ng za e it Te 7

f r a3ternatives s the way in wnich t ne fV i n c t o n aI

t *e Doeratio 
. .s is tbJted aro n the eortr3?r ah e...

-a.ends. ',.,e na'e observe that, in each ease, ht .

assi ni -1 the 0 5st t' ,e o'< o t" i" backe n s is :1i3-' s the

better approacn. Since the work is shared equally by th.e

backends, increasing the number of backends in the siste

reduces the response time and increases the throughput, th:s

meeting the design goals. The selected solutions may also be

implemented with less impact on the existing software.

Our proposal for the sort function is that the backend3

perform the sorting and partial merge,. and the controller

performs the final merge. Our proposal for the join

function using the sort-match join algorithm is that each

backend performs a partial 1oin with its portion of source

records and all target records. Then, the results are sent

to the controller. The controller will then forward the

final result to the host computer.

103

. .. . • .o ,



3., ' -,.; , - v . - .r e a'. n 1 3.r e t

ijr an a' sis, we ass -1e "i at the n t er : se sore ,

-3r1e't are e . ai Ss o - es,

the eu: aton complexity and the ac:ess np ex y f

o r proosals wijII be 3ffected. ?early, a ns-itt>: e

The efet i access '01 exLy is less : e . Te C22Cs.

2 e. :y :2r t:4e stawtn orrt jo 1 lgith -3

se- Si ve o the sIze Df tne fie res :e't e - 'ewn .

Therefore, L 3 ye esirazle t select the Ljreer of

two files as te file to be trnsrnitted.

Tis thesis provides the gro'niwork for frte

analysis. We have presented corput-i, access, a n

1rmunication complexities separately. f some relai e

4eigts can be assigned to these complexities, further

analyses to evaluate the tradeoffs may lead to proviJing A

2 noh e aiong several alternatives, deoen~ing on the

iLstribut-on of the relevant records among the backends, the

communication cost and the acess complexity.

1'6163



Ker 3 7ouglas Zr'r'i Ali 73n-74 ., St - s

P aula, :T.e :mlementaio o;:rf a 7jimi-Tameny :aaa
../3;rl *>zs~: - SCF 7 ARE ~~E:

A.'2 EFFMM3 71WARDS A ?R::2:YPE YOU3, 7ecnni:a! 7ep:-l
*~f~ _,~D4-5:,]5 7 3, NaV3. Postgrauate Sc-0w' J:ur'e '0B3.

:7.e :nene'.ation of a "ulti-Eaz' n :aabs --se

?7R.1: , -et pp 717

13ala PIS~grad<~ate School, JU;Y 11!2.

i~l,9 .~a Ki D. K, Kerr S. ?ola, Steven A.

:fl.~ ~.~er'~a~in cf a M'i-3ackena ____as

3vs:eai P. art 7H. 70 3= 7:__ -14177

_____ NiRRE.VY 2&TRS1A'
*~4 IY !A'A I E'IT , ?oh. R C14-5> U

9Oa Vina ? ga'ate School, March '93

Yertt :. 9., Why Soree Gives t e 3est
Nlernentation of the Natural joji., 'Ic' ili 'Jnlversity,

~ecn ?ep SQS-313',Dctwber 131.

D. ina 9., David J. DeWitt, "Duplicate Record Eliiinati;n
in~ Large Data Files", ACM Transactions on Datatase

S~ste , Vol.3 ,0.2., pages 255-265, June 1993.

105



~.Defence :echni--al C~~~i~ enter

a 1 3 3 r' . l

e.. . . . . . .. . -7 3 -j

'13 vaI Ts t:T,.-1 j a I-e S cnDo.
"onterey, -%Li 'orn;3 1

*4. :' urricul ~f 0 . - er , e 3-7
Comouter 7ecinolD:y
"aval Postgr ad ua te S c n 0.

ot e r e y, -3'L4---rnia )39'13

5. rofessor 'ar/j *.
4 jm

Compluter .3cience -DePartient
'lavaJ. Oostgjraduate Scnoo.
M1onterey, California ?3943

6. Dr. Oaula St-awser, 52)
Computer S3cience Department
'laval %:stgraduate School
M onterey, Ca-lifornia 93943

7. Turk< Deni6z Kuvvetieri
Egiti , Daire 9askanligi
Bakanliklar Ankara TVJKEY

3. Ltjg. Seriar Muldur2
Yildi.rim M4ahallesi
Civi~zier Sokak
Sandikcioglu Apt. Mo.2
B alikesir TURKEY

9. Istanbul Bogazici iJniversitesi *
9iiLgisayar 9olumu
Istanbul T'URKEY

0



LI

FILMED

4-85

* DTIC


